

Capital Market Day

Olivier Legrain (CEO)

22 October 2018

© 2017 IBA SA

ίba

Introduction

Olivier Legrain, Chief Executive Officer, IBA

Proton therapy US Market evolution

Beth Klein, President IBA North America

Model-Based Approach development in Europe and in USA

Prof. Dr. J.A. Hans Langendijk, Chair, Department of Radiation Oncology at University Medical Center Groningen

The Beaumont experience with Proteus®One after one year of operation

Craig W. Stevens, MD, PhD, Chair of Radiation Oncology, Beaumont Health System

Questions and answers

Optional tour of IBA's booth, # 2135

Disclaimer

This presentation may contain forward-looking statements concerning industry outlook, including growth drivers; the company's future orders, revenues, backlog, or earnings growth; future financial results; market acceptance of or transition to new products or technology and any statements using the terms "could," "believe," "outlook," or similar statements are forward-looking statements that involve risks and uncertainties that could cause the company's actual results to differ materially from those anticipated. The company assumes no obligation to update or revise the forward-looking statements in this release because of new information, future events, or otherwise.

Grow the PT market

Facilitate evidence generation

Increase awareness of PT benefits

- Increase affordability of PT solutions

Examples of IBA initiatives to support PT adoption

- Support of Proton Collaborative Group (PCG)
- Support of patient advocacy groups (e.g. Alliance)
- Promote the model based approach for proper patient selection
- Leverage IBA PT Users meeting
- Expand symposiums on PT
- Facilitate multidisciplinary focus groups
- Launch Victoria Advisory Committee at ASTRO 2018 to define the future of Proton Therapy
- Publicize white papers
- Continuously strive to reduce treatment cost

Increase IBA's market share

- Superior clinical technology
- Fastest installation in the market
- Reliability of IBA equipment
- Continuous upgradability of systems

Strategic Partnerships

Example of initiatives to increase market share

- Continued research and development on beam, imaging, workflow and software integration
- Continued reduction of installation time
- Proven availability of IBA systems (uptime of 98%)
- Most comprehensive training program
- All systems upgradable to the latest technology
- Largest and most experienced PT users community
- Continued clinical innovation with our partners
- Extension of sales network with our partners
- Open vendor policy coupled with strong partnerships with RT leaders

On going trials on a large number of indications

Trials by Tumor Site

- brain/CNS/skull base
- breast
- eye
- sarcoma
- Iung
- liver
- esophagus/upper GI
- Rectum
- HNC
- pancreas
- prostate
- pediatric
- others

Trials by Type of Design

- Randomized interventional trials
- Observational
- Non randomized interventional
- Registry/data collection
- Others

Long-term potential of PT is encouraging

North America

- Change of business model (integrated approach)
- Beaumont: highly compelling clinical and business case
- PT prospects on the rise

Europe

- Special issue of the Green Journal on PT
- Model based approach is gaining momentum

APAC

- IBA is the only PT company with an operating licence in China
- Market environment still fuzzy

Growing evidence globally

174 on going trials at end H1 2018287 publications in H1 20188 high level seminars promoting PT in all regions

Emergence of new treatment modalities

Hypofractionation Arc Therapy Flash Therapy Combination with immunotherapy

INTERNAL USE ONLY

IBA leads the PT market

Market Evolution

IBA leading market share – order intake 2018

Center	No of rooms	Region	Vendor
Proton Partners International 7*	1	Europe	IRΔ
Proton Partners International 8*	1	Europe	IBA
Proton Partners International 9*	1	Europe	IBA
European Institute of Oncology (IEO)**	1	Europe	IBA
China CNNR**	1	Asia	IBA
Parkway Pantai	1	Asia	IBA
Jiangxi Cancer Hospital	1	Asia	Mevion
Tokushukai Medical Group	1	Asia	Hitachi
University of Utah	1	North America	Mevion

* Under financing

** Down payment received

IBA – a global leader in proton therapy

12

IBA – a global leader in proton therapy

13

Evolution of single room solution market share

4 Oct 2018

IBA – a global leader in proton therapy

15

Service backlog

Figures in million euros

Service contracts

Including only financially activated contracts

IBA leads the PT market

IBA Solutions

Undisputable advantages of IBA solutions

iba

- Fastest installation
- True compactness
- Smart workflow
- Clinical excellence
- Software integration
- Strategic partnerships
- Innovation built on expertise
- Continuum upgradability

Proteus[®]ONE

In the most important segment - single room solutions, IBA is by far stronger than the competition

Consistently delivered* on schedule < 12 months in H1

Proteus[®]ONE Rutherford CC, Newport, UK 9 months**

Proteus[®]ONE Toyohashi , Japan 10 months**

Proteus[®]**ONE** Hokkaido Ohno, Sapporo, Japan 11 months

Proteus[®]**ONE** Cyclhad/Archade, Caen, France 12 months

Proteus[®]PLUS UMCG, Groningen, The Netherlands 12 months

Vs 28 months for IBA's main competitor in HPTC***

Proteus[®]ONE

The true compact IMPT single room solution. IBA's main competitor 70% bigger in volume

Smart workflow – 16min/patient in treatment room

Ambient experience to decrease patient anxiety

Wireless hand pendant to increase staff comfort

Unique instantaneous imaging available all the time

Remote operation of accessories

~ 20% more efficient than competition

more patients that could be treated per room per year with IBA solution

First 500 patients treated at Willis-Knighton, LA, US Head & Neck Lung 9% 10% Gastrointestinal Brain Brain 7% Gynecological 15% 5% Breast 4% **6**% Others 9% Prostate 43%

Prostate

First 100 patients treated at Beaumont, MI, US

Software integration

Strategic partnerships

- Integration of software and imaging solutions
- Patient-focused solutions
- Commercial collaboration
- Co-marketing

Continued research and development

Good news for PT Market development

- Major RT player invest in PT
- Compact one room is the way to go
- High clinical interest in new clinical modalities
 - ARC Therapy
 - Hypofractionation
 - Combination with immuno
 - FLASH

IBA remains 3 steps ahead with proven superiority of open gantry

- Main competitor still 70% bigger
- Proven clinical performance
- Most efficient workflow
- Fastest installation
- Demonstated performance through largest installed base: 26 systems sold, 7 in operation
- Newer, more cost efficient cyclotron

Proton Therapy US Market Evolution Beth Klein, President IBA PT North America

22 October 2018

iba

Projected Operational PT centers in North America in 2020

Evolution of the proton therapy market in North America

High level market drivers

ACCELERATORS

- Center Competition fueling demand (fear of losing share)
 - Turf war is on defensive & offensive strategies
 - Fear of losing patients/revenue > fear of PT investment
- Prestige driving academic institutions
 - Need PT to attract & maintain top academic staff
 - PT becoming a "Must-Have" for a complete residency
- Reduction in barriers to entry
 - Affordable compact systems
 - Linac-like workflow
 - Increased indications/throughput due to PBS and CBCT
 - Access to capital easing-up

BRAKES

- Payor Denials
 - Private Payers not paying; no prostate
 - Denial process drives patient to RT
- TCO (Total cost of Ownership) High
 - Competing projects
- Negative press
 - Quantification of PT value needed
 - Early Center failures

Engaging Patients in Building Advocacy for insurance reform

Investing in Acceleration of Registries and Model based approach

Changing the Business Model

Focused on PT Insurance Reform through Patient Advocacy

Patient Focused Campaigns Build Patient Advocacy Base Increase Media Placement

Patient Campaigns

Building Patient Advocacy Base

CANCER PATIENTS' TIMELY TREATMENT BILL OF RIGHTS:

Principles to Ensure Fair, Timely, and Transparent Access to Cancer Treatment

Cancer patients and their doctors should be fighting *cancer*, not insurance companies. Unfortunately, too many cancer patients are battling restrictive, opaque, and unfair insurance review and appeal processes that drastically delay or make it impossible to receive treatments their doctors appropriately prescribe.

The Cancer Patients' Timely Treatment Bill of Rights: What All Cancer Patients Deserve

 Fair, appropriate access to doctor-recommended treatment, with approval/denial decisions made:

- in a transparent process
- · based on accurate and up-to-date clinical criteria, and
- appeals handled by a medically qualified expert in the type of cancer the patient is facing, and the specific type of treatment recommended
- Timely access to treatment with initial approval/denial decisions made within 1 day – and appeals settled no later than 5 days – from the initial request. State insurance commissioners review final denials and hand down a decision within 15 days
- Enforcement mechanisms executed by insurance commissioners, including:
 - automatic approval if insurer fails to meet 5-day timeline for expedited appeal
 - meaningful and substantial fines for repeated failure to provide fair, appropriate approvals
- The same rights for cancer patients covered by employer self-funded plans, which are not regulated by state insurance commissioners

Elevating patient voice through Media placement

Secured 70+ media placements that elevated the patient voice to educate the public, decision makers, and key opinion leaders about proton therapy benefits and cancer care access issues.

- CNN put the value of proton therapy and access issues in the national spotlight when reporter Wayne Drash <u>published a long story</u> featuring a cancer patient's struggle to get payment for proton therapy.
- The story, which referenced the Alliance and our Cancer Care Denied Report, was amplified by 100 additional news outlets through syndication; it also inspired additional coverage by CNN's Headline News.

Alliance Website & Social Media

Act Now: Sign the Petition to Insurers!

TAKE ACTION | SIGN THE BANNER

SHARE YOUR STORY

OUR STORIES

THE ISSUE

Too many people fighting cancer are also battling restrictive, complex insurance policies and processes that make it difficult or even impossible to receive proton radiation therapy that their doctors prescribe.

Patients should be able to receive quick answers and fair treatment from insurance companies when faced with a cancer diagnosis.

By signing this petition, you will be joining advocates from around the country who are asking insurers to fight cancer, not cancer patients!

Petition Text

Alliance for

Proton Therapy Access

TO INSURANCE COMPANIES: Cancer patients deserve fair and timely access to the best available treatment recommended by their doctors. When it comes to cancer, patients don't have time to waste on unnecessary bureaucracy – they need quick answers to life-threatening problems.

Research. Innovation. Results.

The New York Times

Although most of the proton centers in the United States are profitable, the industry is littered with financial failure: Nearly a third of the existing centers lose money, have defaulted on debt or have had to overhaul their finances.

Factors driving failure;

- Early market stage- no data to build realistic business models
- Large; 4-5 rooms- high patient volume expectations
- Stand-alone; not aligned with a hospital partner
- Early technology; no IMPT, CBCT
- Highly leveraged financing

Current Center Profiles;

- Compact single-room solutions are less risky
 - Most centers opt for 1-2 rooms
- Most centers are hospital base providing inhouse RT patients and staff/equipment synergies
- Business models are more conservative in terms of debt ratio and revenue projections
- Remaining stand-alone centers considering partnership with hospital for patient referral

IBA INTERNAL USE ONLY

PROTECT + ENHANCE + SAVE LIVES

Driving to make Proton therapy accessible to every patient who can benefit from it!

Model-Based Approach development in Europe and in USA

Prof. Dr. J.A. Hans Langendijk, Chair, Department of Radiation Oncology at University Medical Center Groningen

The model-based approach

IBA meeting, San Antonio (US)

Prof. dr. Hans Langendijk Department of Radiation Oncology, UMCG

Disclosures

	COI status	Names of companies / organizations
① Post of executive / consultant	No	Honorarium from IBA for consultancy and presentation at IBA symposia paid to UMCG Research BV
② Stocks	No	
③ Patent royalties	No	
Stage moneys	No	
5 Manuscript fees	No	
6 Grant / Research funding	YES	Department of Radiation Oncology has research collaborations with IBA, RaySearch, Siemens and Mirada
⑦ Other rewards	No	

Current standard: photons

Problem: Dose-redistribution

Photons

Maximal sparing lungs

Maximal sparing heart

Advantage protons

Superior beam properties: **U** Dose-redistribution

Maximal sparing lungs

Maximal sparing heart

Sparing of heart and lungs

Indications proton therapy Health Council Report (2009)

Indications proton therapy Health Council Report (2009)

50

Innovation radiotherapy

- Incentive of most technological development in RT
 - Maximum tumor control (minimal toxicity
 - ALARA-principe: A Low As Reasonably Achievable

Model-based Approach

umcg

Main conditions:

- 1. Bio-equivalent target dose \rightarrow *local control similar*
- **2.** $\Delta Dose in or more organs at risk$
- 3. \triangle Dose results in clinically relevant reuction of toxicity (\triangle NTCP)

National Indication Protocol Proton Therapy

HEAD and NECK CANCER

Model-based approach

Selection

Validation

STEP 1: Select NTCP model

- Multivariable NTCP-models

STEP 2: Individual dose comparison

Dose reduction (**\Dose**): relevant DVH parameters

STEP 3: Estimate NTCP reduction (ΔNTCP)

Translate ΔDose to ΔNTCP

STEP 4: Validation

- External validation NTCP-model with new technology

Only applicable when the intended use of protons is to prevent radiation-induced side effects

Three main conditions:

- 1. Bio-equivalent dose to the target
- 2. $\Delta Dose in one or more organs at risk$
- **3.** Δ Dose translates into clinically relevant Δ NTCP

Model-based approach

STEP 1: Select NTCP models

Multivariable NTCP-models

STEP 2: Individual dose comparison

– Dose reduction (**\Dose**): relevant DVH parameters

STEP 3: Estimate NTCP reduction (ΔNTCP)

Translate ΔDose to ΔNTCP

STEP 4: Validation

- External validation NTCP-model with new technology

Langendijk et al, R&O 2014

NTCP-model selection procedure

- 1. Committee of experts in the field
- 2. Selection of published NTCP-models
 - Predefined quality criteria
 - Limited number of endpoints:
 - Xerostomia
 - Dysphagia
- 3. External validation in independent data sets
 - Independent epidemiology centre (Julius Centre, Utrecht)

National indication protocol

Head and neck cancer (primary setting)

	NTCP-models (6 months after end of RT)			
Predictors	Patient-rated moderate-to-severe xerostomia 1	Dysphagia grade ≥ 2 ²	Tube feeding dependence ³	
D _{mean} contralateral parotid gland	B=0 052		B=0.022	
D _{mean} oral cavity		B=0 <mark>.024</mark>		
D _{mean} superior PCM		B=0 <mark>.024</mark>	B=0 030	
D _{mean} inferior PCM			B=0 <mark>013</mark>	
D _{mean} cricopharyngeal muscle			B=0 <mark>008</mark>	
Baseline xerostomia	Precictor			
Baseline dysphagia		Predictor		
Treatment modality			Precictor	
Weigh losss prior to RT			Precictor	
T-stage	↓	Ļ	Preciptor	

¹ Beetz et al, R&O 2011; ² Christianen et al. R&O 2012; ³ Wopken, et al. R&O 2016

Model-based approach

STEP 1: Select NTCP models

Multivariable NTCP-models

STEP 2: Individual dose comparison

Dose reduction (ΔDose): relevant DVH parameters

STEP 3: Estimate NTCP reduction (ΔNTCP)

Translate ΔDose to ΔNTCP

STEP 4: Validation

External validation NTCP-model with new technology

Langendijk et al, R&O 2014

Case

- cT3N2cM0
- Base of tongue carcinoma
- Planned for concurrent chemoradiation
- Baseline toxicity:
 - Grade I xerostomia
 - Grade II dysphagia
 - No weight loss

Produce best VMAT-plan Model-based optimization

Tube feeding dependence

Pre-selection tool

Does the patient qualify for a plan comparison (VMAT versus IMPT)?

60% NTCP-values > Δ NTCP thresholds 50% Pre-selection VMAT 40% tool NTCP 30% 20% 10% **ANTCP-Thresholds** 0% Patient-rated Tube feeding Dysphagia dependence xerostomia

NTCP-profile VMAT

Does THIS patient qualify for a plan comparison (VMAT versus IMPT)?

Plan comparison Proton therapy treatment planning

- Similar dose prescription and fractionation as for VMAT
 - 35 x 2.00 Gy / 5 times per week = 70.00 Gy
 - 35 x 1.55 Gy / 5 times per week = 54.25 Gy
- IMPT Pencil beam scanning
 - Standard 4-field beam configuration with post hoc adjustment of beam set up
 - Robust treatment planning:
 - 5 mm set up inaccuracy
 - 3% range uncertainty

Courtesy: Dan Scandurra (UMCG)

Produce best IMPT-plan

Model-based optimization: similar dose constraints

umcg

Step 2: Plan comparison to determine \Dose

■VMAT ■IMPT

Protons

Model-based approach

STEP 1: Select NTCP models

- Multivariable NTCP-models
- **STEP 2: Individual dose comparison**
 - Dose reduction (**\Dose**): relevant DVH parameters

STEP 3: Estimate NTCP reduction (ΔNTCP)

– Translate $\triangle Dose$ to $\triangle NTCP$

STEP 4: Validation

External validation NTCP-model with new technology

Langendijk et al, R&O 2014

Step 2: Plan comparison to determine \Dose

Photons

Protons

umcg

Step 3: Translate $\triangle Dose into \triangle NTCP$

Step 3: Translate **ADose** into **ANTCP**

umcg

Step 3: Translate Δ **Dose into** Δ **NTCP**

Step 3: Translate **ADose** into **ANTCP**

ΔNTCP-profile Does THIS patient qualify for protons?

umcg

ΔNTCP-profile Does THIS patient qualify for protons?

umcg

First experience UMCG Primary setting

Model-based selection

NTCP-profile

			FA	RLY SI	DE EE	FCTS		LATE SIDE EFFECTS							
SIDE EFFECTS	W1	W2	W3	W4	W5	W6	W7	W12	M6	M12	M18	M24	M36	M48	
Dysphagia grade ≥ 2															
Xerostomia grade ≥ 2															T
Tube feeding dependence															
Salivary inflammation grade ≥ 2															T
Oral mucositis grade > 3															I
Late mucosal grade ≥ 2															
Dysgeusia grade ≥ 2															Γ
Oral pain grade ≥ 3															T
Pharvgeal pain ≥ 3															
SIDE EFFECTS	W1	W2	EA W3	RLY SI W4	DE EFI W5	ECTS W6	W7	W12	M6	M12	M18	M24	FFECT M36	S M48	r
Dysphagia grade ≥ 2															
Xerostomia grade > 2															t
Tube feeding dependence															T
Salivary inflammation grade ≥ 2															
Oral mucositis grade ≥ 3															
Late mucosal grade ≥ 2															
Dysgeusia grade ≥ 2															
Dysgeusia grade ≥ 2 Oral pain grade ≥ 3															T

		EARLY SIDE EFFECTS									LATE SIDE EFFECTS							
SIDE EFFECTS	W1	W2	W3	W4	W5	W6	W7	W12		M6	M12	M18	M24	M36	M48	M6		
Dysphagia grade ≥ 2																		
Xerostomia grade ≥ 2																		
Tube feeding dependence																		
Salivary inflammation grade ≥ 2																		
Oral mucositis grade ≥ 3																		
Late mucosal grade ≥ 2																		
Dysgeusia grade ≥ 2						1												
Oral pain grade ≥ 3																		
Pharvgeal pain ≥ 3																		

Model-based selection \triangle NTCP-profile (biomarker for benefit of protons)

△NTCP-profile with SMALL benefit

NO indication proton therapy

EARLY SIDE EFFECTS LATE SIDE EFFECTS SIDE EFFECTS W3 W4 W5 W6 W7 W1 W2 W12 M6 M12 M18 M24 M36 M48 M60 Dysphagia grade ≥ 2 Xerostomia grade ≥ 2 Tube feeding dependence Salivary inflammation grade ≥ 2 Oral mucositis grade ≥ 3 Late mucosal grade ≥ 2 Dysgeusia grade ≥ 2 Oral pain grade ≥ 3 Pharygeal pain ≥ 3 Weight loss grade ≥ 3 Aspiration grade ≥ 3

Proton therapy indicated

△NTCP-profiele with LARGE benefit

Model-based approach

STEP 1: Select NTCP models

- Multivariable NTCP-models

STEP 2: Individual dose comparison

- Dose reduction (**\Dose**): relevant DVH parameters
- **STEP 3: Estimate NTCP reduction (ΔNTCP)**
 - Translate ΔDose to ΔNTCP

STEP 4: Validation

External validation NTCP-model with new technology

Langendijk et al, R&O 2014

Model-based versus RCT validation

Randomized controlled trial

Model-based validation

Model-based comparison study

Study design

umcg

Head and neck cancer radiotherapy

Toxicity profiles of concurrent chemoradiation

Side effects	Acute toxicity								Late toxicity						
	W1	W2	W3	W4	W5	W6	W7	W12	M6	M12	M18	M24			
Dysphagia (grade≥2)	16%	25%	44%	64%	82%	85%	86%	56%	45%	31%	23%	20%			
Tube feeding dependent	4%	8%	12%	42%	51%	60%	62%	45%	30%	20%	15%	14%			
Xerostomia (grade≥2)	5%	11%	34%	45%	56%	60%	57%	54%	42%	35%	31%	30%			
Sicky saliva (grade≥2)	6%	15%	36%	48%	53%	54%	52%	40%	35%	30%	19%	18%			
Loss of taste (grade≥2)	3%	15%	34%	60%	70%	80%	83%	60%	45%	31%	21%	20%			
Oral mucositis (grade≥3)	0%	5%	16%	46%	64%	70%	74%	29%							
Aspiration (grade≥3)	5%	3%	6%	8%	10%	16%	14%	18%	12%	15%	10%	14%			
Osteoradionecrosis (grade≥3)								1%	6%	5%	4%	3%			
Hypothyroidism (grade≥3)									10%	17%	25%	31%			
Osteoradionecrosis (grade≥3) Hypothyroidism (grade≥3)								1%	6% 10%	5%	4%	3%			

0% 20% 40% 60% 80% 100% Percentage with toxicity

Prospective HEAD & NECK Data Registration Program UMCG

Standard follow up program

Assessment	TO	Weekl y	After completion of radiotherapy											
	10	during RT	6 weeks	6 months	12 months	18 months	24 months	→ 60 months						
Acute toxicity	+	+	+											
Late toxicity	+			+	+	+		yearly						
PROMs	+	+	+	+	+	+		yearly						
Objective endpoints	+			+	+									

UMCG Head & Neck Prospective Data Collection Program

Rapid learning health care system

Model-based validation

Conclusions

- Model-based approach
 - Model-based selection
 - Model-based optimization
 - Model-based validation
- Model-based selection is feasible in clinical setting
- First results in head and neck cancer suggest benefit with regard to less acute toxicity
- Alternative for RCT when protons are used to prevent side effects

Acknowlegements

Department of Radiation Oncology

Henk Bijl Margriet Dieters Miranda Kramer Roel Steenbakkers Anne van den Hoek

Stefan Both Roel Kierkels Hans Paul van der Laan Henriette van der Laan-Boomsma Dan Scandurra Arjen van der Schaaf Lisa van den Bosch Erik Bakker

Department of Otolaryngology and Head and Neck Surgery Gyuri Halmos Bernard van der Laan **Department of Maxillofacial surgery** Max Witjes Jan Roodenburg **Department of Medical Oncology** Jourik Gietema Sjoukje Oosting **Julius Center Utrecht** Carl Moons Hans Reitsma **Ewoud Schuit**

The Beaumont experience with Proteus®One after one year of operation Craig W. Stevens, MD, PhD, Chair of Radiation Oncology, Beaumont Health System

Beaumont

Beaumont Proton Therapy Center

Craig W. Stevens, M.D., Ph.D. Professor and Chair Department of Radiation Oncology

Thanks!

- IBA
- Team at Beaumont
 - Too many people to count but
 - Xuanfeng Ding, PhD
 - Peyman Kabolizadeh, MD PhD
 - Tom Lanni
 - Patti Cardoze

Summary

- We successfully installed and commissioned the first proton center in MI
- We met critical C.O.N. timeline requirements
- This allowed us to
 - Treat the first proton patient in MI
 - Increase our overall consults by almost 10%
 - Treat the first pediatric patient with protons in MI
 - Develop the next generation of proton therapy with IBA
- Impossible without STRONG commitment from IBA

Beaumont Proton Therapy Center

Physics of Proton Therapy

• Photons

• Protons

Disease sites

Less integral dose

Head, Neck and Brain

Lung

Head-neck - photon

Ċ

Brain-skull - proton

Brain-skull - photon

Lung - photon

Prostate

Prostate - photon

For Pediatric patient

Photon VMAT **Proton PBS**

Beaumont Journey

- Initial plan for Proton Center dates from ~2007
 - The 5 room plan was tabled due to the financial crisis
- When I was being recruited to Beaumont in 2013, PTC was reintroduced.
- Board approval in January of 2014
- CON requirements were daunting
 - CON commission had NEVER overseen the construction of a successful center
 - Penalties could be severe if we failed

CON Requirements

Beaumont Journey

- Request for Proposals Drafted
 - With help from Proton International
 - IMPT, CBCT, FDA approved, install by March 2017
- Sent to 7 vendors
 - 6 responded
- Three vendors were chosen for site visit
 - One couldn't deliver IMPT
 - One had a compact cyclotron that would reduce the cost of construction and operations so......
- IBA was selected July 2014

CON Requirements

Beaumont Journey

- In November 2016, clear we would miss the last two milestones
 - One because it was never reasonable
 - One because of weather and other construction delays
- We restated the time line with a plan to treat the first patient by June 30, 2017

Beaumont Journey

- In February 2017, the schedule slipped again
- We reached out to IBA and other partners to develop an aggressive new schedule
- Plan for first patient to be a patient with a brain tumor

Collaborate and synchronize the team schedule

- Combine the beam data acquisition procedure with acceptance test (IBA & Beaumont)
 - Lock beam optics settings
- Beam modeling and validations (Beaumont & RaySearch America & Sweden)
 - Dry run with current data format
 - Communicate with the RaySearch team
- Mosaiq integration and on-site therapist training
 - Address the bugs and workflow issues
- Independent Physics Check/IROC TLD check
 - Dr. Gao from Chicago Proton Center
 - IROC team (Beaumont commission and treatment schedule)
- Took 16 week process and condensed it to 7

Beaumont Commissioning Timeline

Ding et al. NA-PTCOG 2017

Ahead of Schedule

Beaumont Proton Therapy Center

ProteusONE treatment room

Protons

- Our center has IMPT and 3 options for daily imaging
 - Very precise delivery of dose to tumor
 - Reduce uncertainties, and so reduce the target volume
 - This further reduces normal tissue doses
 - Better dose to tumor with less side effects!!!
- Pediatric Oncology relocated to second floor of PTC
 - More than doubles space for pediatrics

Beaumont

Proton Center 1st Patient Treatment June 28, 2017

Treatment mix

- Mostly CNS and H&N
- Small volume of prostate
- About 20% peds
 - Depends on your definition.....
- 1-3 anesthesia cases

Ramp up

- Intentionally slow
- Treating 15hrs/day
- Averaging 25-27 pts/day

Interesting observations

- Proton installation resulted in growth in Brachytherapy
 - Especially prostate
- No effect on GK
- Linac volumes
 - Across 10 linac system
 - 10% growth at RO
 - Stable elsewhere

Advertising works

- Proactive media outreach started in June
- 3X call volume
- Increased proton #s
- Increased X-ray #s

Beaumont Proton Therapy Center

Commissioning

- All tumor sites commissioned in 6 months
- Waited June -> November for anesthesia
- Highly mobile tumors still a problem
 - Though SPArc may help significantly.....
- Eyes 2020ish

During this time we also

- Dr. Ding has developed a process for rotational IMPT with PBS – SParc
- Developed a sponsored research program with IBA
- Submitted R03 for technology development
- Published extensively
- Developed and opened a Patient Access Center to facilitate referrals and coordinate care
- Enhanced authorization and billing process
 - <10% patients ultimately failed authorization</p>

Spot-Scanning Proton Arc (SPArc)

- A robust, delivery efficient and potential for continuous arc delivery advanced IMPT optimization algorithm
 - Prostate (PTCOG 2017)
 - Brain Hippocampus sparing (AAPM 2017)
 - Cranial SRS (ASTRO 2017)
 - Spine SRS (ASTRO 2017)
 - Bilateral Head & Neck (AAPM 2017)
 - Advanced staged lung cancer (NA-PTCOG 2016)
 - Mobile tumor interplay (AAPM 2017)

Ding X & Li X IJROBP 2016

HNC: Dosimetric comparison

More than 30% reduction in the parotid mean dose

Figure 1 (A) Dose distribution comparison between SPArc and ro-IMPT for patient #3. B) DVH evaluation, SPArc (solid line) and ro-IMPT (dotted line); Ding et al. AAPM 2017

Interplay effects for proton therapy

- The motion of the beam could interfere with the motion of target
- May result in distortion of the planned dose distribution, local over- and under- dosage
- One of the major concerns for treating lung cancer with scanning beam proton

Single-fraction 4D dynamic dose

IMPT

SPArc

Li et al. Radiation Oncology 2018

10595

90 85 80

70 60 50

Patient 6, ITV volume of 402cc, S-I motion of 1.2 cm

Summary

- We successfully installed and commissioned the first proton center in MI
- We met critical C.O.N. timeline requirements
- This allowed us to
 - Treat the first proton patient in MI
 - Increase our overall consults by almost 10%
 - Treat the first pediatric patient with protons in MI
 - Develop next generation of proton therapy with IBA
- Impossible without STRONG commitment from IBA

Questions?

Conclusion

Olivier Legrain, Chief Executive Officer, IBA

© 2017 IBA SA

Conclusion

- Strong perspectives for the proton therapy market
 - Growing acceptance of proton therapy
 - Change of business model (integrated compact system)
 - Strong pipeline
- IBA technological lead over competition
 - IBA world-class innovative proton therapy solutions
 - Strong partnerships
 - IBA experience in installing equipment clearly established

Question and Answer

